Supplementary Information for

Genomic analysis of the natural history of attention-

deficit/hyperactivity disorder using Neanderthal and ancient Homo

sapiens samples

Paula Esteller-Cucala, Iago Maceda, Anders D. Børglum, Ditte Demontis, Stephen V. Faraone,

Bru Cormand**, Oscar Lao**

These authors contributed equally to this work

*Correspondence: bcormand@ub.edu (B.C.); oscar.lao@cnag.crg.eu (O.L.)

This PDF file includes:

Supplementary Figures S1 to S4

Supplementary Tables S1 to S3

1

Supplementary Figure S1. Null distribution of odds ratio between the percentage of ancestral alleles that are ADHD-risk alleles for SNPs that do not contain A/T or C/G alleles and with a GWAS p-value \leq 1e-8 and with a GWAS p-value \geq 0.9 controlling for MAF after 10,000 permutations.

Supplementary Figure S2. Geographic location and estimated age of West Eurasian humans. Geographic distribution and age of samples from (A) the Pre-Neolithic dataset (16 samples), (B) Near East dataset (151 samples) and (C) Neolithic dataset (84 samples) considered for analyses. Each coloured dot corresponds to an age-defined individual (years BP, before present). Geographical locations were jittered to simplify the interpretation of densely sampled locations.

Supplementary Figure S3. Null distributions of the Kendall τ correlation coefficients between sample age and f_{ADHD} generated after 10,000 permutations for (A) the Pre-Neolithic, (B) Near East and (C) Neolithic dataset.

Supplementary Figure S4. Null distribution of mean β generated from 10,000 permutations of the introgressed tagSNPs. Given that the subset of considered variants had a p-value < 0.01, effect sizes close to zero (i.e., with an odds ratio of approximately 1) were not present in the distribution. To overcome the discontinuity of the distribution, all β values were transformed to fit a zero-centred distribution from which the mean β for the observed data was computed. For each round of permutations, a simulated dataset was obtained by randomly assigning the effect size of each allele from each of the 1,151 considered tagSNPs and the mean β of the resulting dataset was then calculated. The dashed line represents the mean β observed in the actual dataset.

Supplementary Table S1. Kendall's τ correlation between the effect sizes of ADHD-associated SNPs with other psychiatric disorders considering the variants from three ancient datasets.

Psychiatric disorders		Ancient datasets (number of variants)		
		Pre-Neolithic	Near East	Neolithic
		(3276 SNPs)	(2707 SNPs)	(3320 SNPs)
ASD	τ	0.498	0.501	0.494
	P-value	<1.61e-315	1.61e-315	<1.61e-315
	SNPs of the ancient ADHD dataset included in the ASD GWAS	3275	2707	3320
BD	τ	0.110	0.107	0.106
	P-value	3.50e-20	6.83e-16	7.44e-19
	SNPs of the ancient ADHD dataset included in the BD GWAS	3264	2697	3307
MDD	τ	0.256	0.245	0.249
	P-value	5.20e-100	1.29e-75	1.01e-95
	SNPs of the ancient ADHD dataset included in the MDD GWAS	3241	2675	3281
SCZ	τ	0.086	0.075	0.069
	P-value	6.21e-13	1.39e-08	6.09e-09
	SNPs of the ancient ADHD dataset included in the SCZ GWAS	3276	2707	3320

ASD: Autism Spectrum Disorder, BD: Bipolar Disorder, MDD: Major Depression Disorder, SCZ: Schizophrenia

Supplementary Table S2. Online resources.

Deposited data (Ref)	Source		
Pre-Neolithic genotypes ¹	han a //o i ah han ah an an da da /daa a a da		
Near East genotypes ²			
Neolithic genptypes ³	https://reich.hms.harvard.edu/datasets		
Ancient Africans dataset ⁴			
Altai Neanderthal Genome ⁵	http://cdna.eva.mpg.de/neandertal/altai/AltaiNeandertal/VCF/		
Modern Genomes (1000 Genomes Project Phase 3) ⁶	ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/		
ADHD European GWAS ⁷	https://ipsych.au.dk/downloads/		
ASD ⁸ , BP ⁹ , MDD ¹⁰ and SCZ ¹¹ GWAS	https://www.med.unc.edu/pgc/download-results/		
SDS UK10K ¹²	http://datadryad.org/resource/doi:10.5061/dryad.kd58f		
Neanderthal-introgressed tagSNPs in modern humans ¹³	http://akeylab.princeton.edu/downloads.html		

Supplementary Table S3. Prior distributions of the ABC_DL analysis. Node notation from Fig. S6.5 from (26). $T_X = time$ of node X. U(A,B) = time distribution between A and B. N(x,y) = time normal distribution with mean x and standard deviation y.

Parameter	Prior distribution
γ*	<i>U</i> (-1 <i>e</i> -6,1 <i>e</i> -6)
genetic drift**	<i>U</i> (0, 0.0000005)
ADHD_GS_root	N(-0.003,0.001)
T_split_Africa***	U(46021, 126000)
T_X***	U(T_split_Africa-7549, T_split_Africa)
T_western_Eurasian***	$U(T_X - 37471, T_X)$
T_nc1e0***	U(T_western_Eurasian-37471, T_western_Eurasian)
T_ncle2***	U(T_ncle0-30011, T_ncle0)
T_nclc1***	U(T_ncle2-34796, T_ncle2)
T_ndle0***	U(T_nclc1-34796, T_nc1c1)
T_n1e0***	U(T_ndle0-18721, T_ndle0)
T_ndle2***	U(T_nle0-18721, T_nle0)
T_nf1f1***	U(T_nc1c1-30011, T_nc1c1)
T_n1e1***	U(T_nf1f1-30011, T_nf1f1)
T_n1e3***	U(nle1-8051, nle1)
T_nd1d1***	U(nle1-30011, nle1)
T_ndle3***	U(nd1d1-18721, nd1d1)
T_ncle3***	U(nd1d1-30011, nd1d1)
T_nle2***	U(T_nle0-8050,T_nle0);
T_nle4***	$U(min(T_nle2, T_nle3) - 8050, min(T_nle2, T_nle3))$
T_ncle4***	$U(min(T_ncle2, T_ncle3) - 30011, min(T_ncle2, T_ncle3))$
T_ndle4***	$U(min(T_ndle2,T_ndle3)-18721,min(T_ndle2,T_ndle3))$

^{*} by generation and SNP. Generation time = 29 years ¹⁴

^{**} by generation. Generation time = 29 years

^{***} years

References

- 1. Fu, Q. et al. The genetic history of Ice Age Europe. Nature 534, 200–205 (2016).
- 2. Lazaridis, I. *et al.* Genomic insights into the origin of farming in the ancient Near East. *Nature* **536**, 419–24 (2016).
- 3. Lipson, M. *et al.* Parallel palaeogenomic transects reveal complex genetic history of early European farmers. *Nature* **551**, 368–372 (2017).
- 4. Skoglund, P. *et al.* Reconstructing Prehistoric African Population Structure. *Cell* **171**, 59-71.e21 (2017).
- 5. Prüfer, K. *et al.* The complete genome sequence of a Neanderthal from the Altai Mountains. *Nature* **505**, 43–49 (2014).
- 6. 1000 Genomes Project Consortium *et al.* A global reference for human genetic variation. *Nature* **526**, 68–74 (2015).
- 7. Demontis, D. *et al.* Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder. *Nat. Genet.* **51**, 63–75 (2019).
- 8. Grove, J. *et al.* Identification of common genetic risk variants for autism spectrum disorder. *Nat. Genet.* **51**, 431–444 (2019).
- 9. Stahl, E. A. *et al.* Genome-wide association study identifies 30 loci associated with bipolar disorder. *Nat. Genet.* **51**, 793–803 (2019).
- Howard, D. M. *et al.* Genome-wide association study of depression phenotypes in UK Biobank identifies variants in excitatory synaptic pathways. *Nat. Commun.* 9, 1470 (2018).
- 11. Lam, M. *et al.* Comparative genetic architectures of schizophrenia in East Asian and European populations. *Nat. Genet.* **51**, 1670–1678 (2019).
- 12. Field, Y. *et al.* Detection of human adaptation during the past 2000 years. *Science* (80). **354**, 760–764 (2016).
- 13. Vernot, B. *et al.* Excavating Neandertal and Denisovan DNA from the genomes of Melanesian individuals. *Science* (80). **352**, 235–9 (2016).
- 14. Fenner, J. N. Cross-cultural estimation of the human generation interval for use in genetics-based population divergence studies. *Am. J. Phys. Anthropol.* **128**, 415–423 (2005).